The Structure of Zero Divisor Sum Graphs

Chantelle Bicket, Samantha Graffeo, Whitney Ross, Edward Washington

Abstract

Let Σ_n be the graph whose vertex set is the set of non-zero zero divisors of \mathbb{Z}_n where vw is an edge if $v+w$ is a non-zero zero divisor. We study various graph-theoretic properties of Σ_n, including vertex degree, connectivity and cycles. Further investigation is also made into planar graphs and automorphisms of these kinds of graphs.

1 Preliminaries

1.1 Ring Structure

In order to fully understand the topic at hand it is important to review the properties of rings. A ring is a non-empty set R that has two binary operations, addition and multiplication, satisfying the following:

- $(R, +)$ is an abelian group.
- Multiplication is associative and commutative.
- For all $a, b, c \in R$, the distributive law, $a(b + c) = (ab) + (ac)$ holds.

We use the ring \mathbb{Z}_n, this is the set of integers $0, 1, \ldots, (n - 1)$ under addition and multiplication modulo n. One of the most important concepts is that of a zero divisor.

Definition 1.1. In a ring R, a zero divisor is an element $z \in R$ such that there exists $x \in R$, $x \neq 0$ where $zx = 0$.

Theorem 1.2. [4] In a ring \mathbb{Z}_n, the zero divisors are precisely those non-zero elements that are not relatively prime to n.

In other words, k is a zero divisor in \mathbb{Z}_n if and only if $\gcd(k, n) > 1$, a fact which we will use often throughout the paper. The other important class of elements are the units.
Definition 1.3. A unit is an element $u \in R$ that has a multiplicative inverse in R, i.e. there exists a $v \in R$ such that $uv = 1$.

Theorem 1.4. [4] Let $n > 0$. Every element of \mathbb{Z}_n is either a zero divisor or a unit.

1.2 Graph Structure

We use a graph theoretic approach to study the non-zero zero divisors of the ring \mathbb{Z}_n.

Definition 1.5. A graph G consists of a vertex set, $V(G)$, an edge set $E(G)$, and an association to each edge, $e \in E(G)$ of two vertices called the endpoints of e.

Two vertices are adjacent if they share a common edge. If x and y are adjacent in a graph we denotes this $x \sim y$.

Two adjacent vertices are referred to as neighbors of each other. The set of neighbors of a vertex v, denoted $N(v)$ is called the neighborhood of v. An edge is incident at a vertex if that vertex is one of its endpoints. The degree of a vertex v is the number of edges incident at it, denoted by $\deg(v)$.

A uv-walk in a graph G is a sequence of vertices in G beginning with u and ending at v such that consecutive vertices in the sequence are adjacent. A trail in a graph G is a walk in which no edge is traversed more than once. A uv-path is a walk in a graph starting at a vertex u and ending at a vertex v in which no vertex is repeated except for maybe the first and the last. A cycle is a closed path.

Definition 1.6. Let G be a graph. A subgraph of G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

1.3 Sum Graphs

Definition 1.7. A sum graph is a graph whose vertices are labeled with integers where vertices i and j are joined by a line if and only if the vertex $i + j$ is in the graph.

We investigate the graph Σ_n. The vertex set $V(\Sigma_n)$ consists of the non-zero zero divisors of \mathbb{Z}_n. Distinct vertices $x, y \in V(\Sigma_n)$ are adjacent if $x + y \in V(\Sigma_n)$.

It is important to notice that no vertex v is adjacent to its inverse $-v$ because this would imply that 0 is in the graph.
Note that when \(n \) is prime, \(V(\Sigma_n) = \emptyset \). For our study we will never consider this case.

Theorem 1.8. If \(h \mid n \), then \(\Sigma_h \) is a subgraph of \(\Sigma_n \).

Proof.
For any \(k \in V(\Sigma_h) \), the gcd\((h, k) > 1\). Since \(h \mid n \), then gcd\((n, k) > 1\). Thus, every vertex in \(\Sigma_h \) is a vertex in \(\Sigma_n \).

For all edges \(xy \) in \(\Sigma_h \), we know that \(x, y, x + y \in V(\Sigma_h) \). From the statement above, we know that \(x, y, x + y \in V(\Sigma_n) \). Therefore, \(\Sigma_h \) is a subgraph of \(\Sigma_n \). ☐

2 Vertex Degrees

Definition 2.1. A dominating vertex is a vertex in a graph that is adjacent to every other vertex of \(G \).

Proposition 2.2. Let \(n = 2x \) for some integer \(x \). Then \(x \) is a dominating vertex in \(\Sigma_n \) if and only if \(x \) is even.

Proof.

(\(\Leftarrow \)) Let \(x \in V(\Sigma_n) \) be even. We want to show for all \(v \in V(\Sigma_n) \), with \(v \neq x \), we have \(v + x \in V(\Sigma_n) \).

Case I: Suppose \(v \) is even, or that \(2 \mid v \).
Since \(2 \mid x \), then \(2 \mid v + x \). This implies that gcd\((v + x, n) \geq 2 > 1\), therefore \(v + x \in V(\Sigma_n) \).

Case II: Suppose \(v \) is odd, or that \(2 \nmid v \).
Since \(v \) is a zero-divisor, there exists \(w \) such that \(vw = 0 \in \mathbb{Z}_n \), or, viewing \(v \) and \(w \) as integers, \(n \mid vw \). Since \(2 \mid n \) and \(2 \nmid v \), we know \(2 \mid w \). Then
\[
\begin{align*}
w(v + x) &= vw + wx \\
&= vw + w(n/2) \\
&= 0 + (w/2)n \\
&= 0
\end{align*}
\]
as we are in \(\mathbb{Z}_n \) and \(w/2 \) is an integer.

Therefore, for all \(v \in V(\Sigma_n) \), where \(v \neq x \), it follows that \(x \sim v \). Hence, \(x \) is a dominating vertex in \(\Sigma_n \).
(⇒) If x is a dominating vertex, then x is even.

Suppose towards a contradiction that x is odd. Because x is a dominating vertex, $x \sim 2$, so $x + 2 \in V(\Sigma_n)$. Thus $x + 2$ is odd and $\text{gcd}(x + 2, n) > 1$. This forces $x + 2 = x$, since x is the only odd non-zero zero divisor. This is a contradiction because $x + 2 \neq x$, or $2 \neq 0$. Therefore x is even. Hence, x is a dominating vertex if and only if x is even.

\section*{Definition 2.3.}
Let R be a ring, and $a, b \in R$. We say that a is associate to b if $a = ub$ for some unit u.

\section*{Proposition 2.4.}
If $g, g' \in V(\Sigma_n)$ and g is associate to g', then

$$\text{deg}(g) = \text{deg}(g').$$

\section*{Proof.}
We wish to show that if $g \sim x$ then there exists $y \in V(\Sigma_n)$ such that $g' \sim y$.

Suppose $g \sim x$. This implies that $g + x$ is a non-zero zero divisor. Since g is associate to g', we know $gk = g'$ for some unit k.

Let $y = xk$. Observe that x is associate to y. Since x is a zero divisor, there exists non-zero $s \in \mathbb{Z}_n$ such that $xs = 0$. Also observe:

$$ys = (xk)s = (xs)k = 0$$

So y is a zero divisor. We now show that y is a non-zero zero divisor.

Assume that $y = 0$. Since $y = xk$, this implies that $xk = 0$. Since k is a unit, we can multiply by its inverse and end up with $x = 0$. This is a contradiction since x is a non-zero zero divisor. Therefore $y \neq 0$, and $y \in V(\Sigma_n)$.

Now, we show that $g' \sim y$, or that $g' + y$ is a non-zero zero divisor. Observe:

$$g' + y = gk + xk = (g + x)k,$$

and since $g + x$ is a divisor, there exists a non-zero $c \in \mathbb{Z}_n$ such that

$$(g + x)c = 0.$$
and so
\[
((g + x)k)c = 0
\]
Since \(kc \neq 0\), this implies that \(g' + y\) is a non-zero zero divisor and therefore that \(g' \sim y\).

Define the map \(\Phi: N(g) \mapsto N(g')\) by
\[
\Phi(x) = xk.
\]
This map is injective because if \(xk = yk\), multiplying on the right side by \(k^{-1}\) gives
\[
x = y.
\]
Thus, for each neighbor of \(g\) we are able to find a unique neighbor of \(g'\). Therefore, \(\deg(g') \geq \deg(g)\). By symmetry, \(\deg(g) \geq \deg(g')\). Therefore, if \(g\) is associate to \(g'\),
\[
\deg(g) = \deg(g').
\]

\[\Box\]

Definition 2.5. The minimum degree of a graph \(G\) is the smallest degree of all the vertices in a graph, denoted \(\delta(G)\).

Proposition 2.6. \(\Sigma_n, \delta(\Sigma_n) = 1\) if and only if \(n = 4q\), where \(q\) is prime.

Proof.

(\(\Leftarrow\)) Notice \(V(\Sigma_n) = A \cup B\) where \(A = \{2, 4, 6, \ldots, 4q - 2\}\) and \(B = \{q, 2q, 3q\}\).

Each element in \(A\) is adjacent to every other element in \(A\) except its inverse. Thus \(\deg(v) > 1\) for all \(v \in A\). Also \(q \sim 2q\), but \(q \not\sim 3q\)(because they are inverses) and \(q \not\sim v\) for all \(v \in A \setminus \{2q\}\) because the sum of an even number and an odd number is odd. Therefore \(q\) will have degree 1.

(\(\Rightarrow\)) Let \(v \in V(\Sigma_n)\) such that \(\deg(v) = 1\).

Case I: \(n = tv\) where \(t \geq 5\).

Then, \(v, 2v, 3v, 4v \in V(\Sigma_n)\). As a result, \(v \sim 2v\) and \(v \sim 3v\). So, \(\deg(v) > 1\), which is a contradiction.

Case II: \(n = 2v\)

This implies \(v = -v\). Since \(\deg(v) = 1\), \(v\) is adjacent to some vertex, say \(x\). This means
\[
\begin{align*}
v + x &\in V(\Sigma_n) \\
\Rightarrow -v - x &\in V(\Sigma_n) \\
\Rightarrow v - x &\in V(\Sigma_n) \text{ since } v = -v \\
\Rightarrow v &\sim -x
\end{align*}
\]
Suppose \(x = -x \). Then, since \(x < n \), we have \(n = 2x \). Thus \(v = \frac{n}{2} = x \). This is a contradiction because \(v \) is not adjacent to itself. So \(x \neq -x \) which implies \(\deg(v) > 1 \), a contradiction. Therefore \(n \neq 2v \).

Case III: \(n = 3v \)
Subcase A: If \(2 \mid n \), and since \(3 \mid n \), this implies that \(6 \mid n \). Since \(6 \mid n \), this subcase has been reduced to Case 1.

Subcase B: If \(2 \nmid n \), then 2 is a unit in \(\mathbb{Z}_n \). Now \(-2v = v \) (as \(3v = 0 \)). Since \(\deg(v) = 1 \), suppose \(v \sim x \). This implies

\[
\begin{align*}
v + x & \in V(\Sigma_n) \\
\Rightarrow (-2)(v + x) & \in V(\Sigma_n) \text{ [as } -1 \text{ and } 2 \text{ are units.]} \\
\Rightarrow v - 2x & \in V(\Sigma_n) \\
\Rightarrow v & \sim -2x
\end{align*}
\]

Suppose \(x = -2x \). Then, since \(x < n \), we have \(x = \frac{n}{3} \) or \(x = \frac{2n}{3} \). Thus either \(v = x \) or \(v = -x \). This is a contradiction because \(v \) is not adjacent to itself or to its inverse. So \(x \neq -2x \) which implies \(\deg(v) > 1 \), a contradiction. Therefore \(n \neq 3v \).

Thus we have shown that the minimum degree of \(\Sigma_n \) is 1 when \(n = 4v \). However, we must still show \(v \) is prime. Suppose towards contradiction \(v = st \) where \(s, t > 1 \). Then \(n = 4st \). We see

\[
v \sim s \text{ as } s(t + 1) \text{ is a zero divisor and } st + s \neq n \text{ and } v \sim 2s \text{ as } s(t + 2) \text{ is a zero divisor and } st + 2s \neq n.
\]

Thus \(\deg(v) > 1 \), which is a contradiction. So \(v \) is prime.

\[\Box\]

Proposition 2.7. There exists an isolated vertex, \(\delta(\Sigma_n) = 0 \), if and only if \(n = 3p \) or \(n = 2p \), where \(p \) is prime.

Proof. We will consider the two cases, \(n = 2p \) or \(n = 3p \).

(\(\Leftarrow \)) Assume \(n = 3p \).

The vertex set of \(\Sigma_{3p} \) is of the form: \(A \cup B \) where

\[
A = \{3, 6, \ldots, 3p - 3\}
\]

and

\[
B = \{p, 2p\}
\]

6
Notice, \(p \not\sim 2p \) because \(p + 2p \not\in V(\Sigma_{3p}) \).

Let \(a \in A \). For all these vertices, \(p \not\sim a \) because the vertex set \(A \) contains only multiples of 3. And \(p \) is not a multiple of 3. So \(p + a \not\in A \) and \(2p + a \not\in A \). Also, for every \(b \in B \) we have \(p + b \not= 2p \) and \(2p + b \not= p \), because \(b \) is not a multiple of \(p \). Lastly, \(p \not\sim 2p \) because \(p + 2p = 3p \), and \(3p \not\in V(\Sigma_{3p}) \).

Therefore \(p \) and \(2p \) are isolated vertices in \(\Sigma_{3p} \).

Note: If \(p=3 \), then \(n=9 \), which consists of two vertices, which are isolated.

\((\Leftarrow)\) Assume \(n=2p \).
Consider \(\Sigma_n \) where \(n = 2p \) and \(p \) is prime. In this case, the vertices of \(\Sigma_n \) are of the form:

\[V = \{p, 2, 4, 6, ..., 2p - 2\} \]

Suppose towards contradiction that \(x \sim p \); therefore \(x + p \in V(\Sigma_n) \). The vertex \(x \) corresponds to an even integer.
Because the sum of an even and an odd number is odd, and \(p \) is the only odd vertex,

\[x + p \equiv p \pmod{2p} \]

This implies that \(x = 0 \). However, the element 0 is not in the graph and therefore we have a contradiction. Hence, \(p \) is an isolated vertex of the graph.

Note: If \(p=2 \), then \(n=4 \), which is an isolated vertex.

\((\Rightarrow)\) Case I: Suppose \(n = tp \), where \(t \geq 4 \) and \(t \) is not prime.

Let \(A = \{p, 2p, ..., (t-1)p\} \). Since \(t \geq 4 \), there are at least three elements in \(A \). Let \(r \) be such that \(r \mid t \) and let \(B = \{r, 2r, ..., (p-1)r\} \). Since there are at least three elements in \(r \), \(\deg (b) > 0 \) for \(b \in B \). There are at least \(p - 1 \) elements in \(B \). If \(p \geq 5 \), there are at least 3 elements in the set, and thus we satisfy our conditions. If \(p < 5 \), consider the following two cases.

Case II: Let \(p = 2 \) so that \(n = 2t \), where \(t \) is not prime.
Since \(t \) is not prime, it can be said that \(t = mp \), where \(p \) is prime and \(m \geq 2 \). Then
by substitution, \(n = 2mp \). Since \(m \geq 2 \), this implies that \(2m \geq 4 \), which was treated in Case 1.

Case III: Let \(p = 3 \) so that \(n = 3t \), where \(t \) is not prime.
Since \(t \) is not prime, it can be said that \(t = mp \), where \(p \) is prime and \(m > 1 \). Then by substitution, \(n = 3mp \). Since \(m > 1 \), this implies that \(3m \geq 3 \), which was treated in Case 1.

Case IV: Suppose \(n = tp \) where \(t \) is prime, where \(t, p > 3 \).
Notice \(V(\sigma(tp)) \) can be partitioned into two sets:

\[
A = \{p, 2p, \ldots, (q-1)p\}
\]

\[
B = \{q, 2q, \ldots, (p-1)q\}
\]

All the elements of \(A \) are adjacent to everything except for itself and its inverse. All the elements of \(B \) are adjacent to everything except for itself and its inverse. Since \(t \) and \(p \) are primes greater than three, the degree of any element in \(A \) and \(B \) will be greater than zero.

Proposition 2.8. Let \(p > 3 \) be prime. Then the graph \(\Sigma_{p^k} \) for \(k \in \mathbb{Z} \), has \(p^{k-1} - 1 \) vertices, each of degree \(p^{k-1} - 3 \). In particular, all vertices have even degree.

Proof.
Observe that

\[
V(\Sigma_{p^k}) = \{p, 2p, 3p, \ldots, (p-1)p, p^2, \ldots, (p^{k-1} - 1)p\}.
\]

In particular there are \(p^{k-1} - 1 \) vertices in the graph. Each vertex is adjacent to all others except itself and its inverse in \(\mathbb{Z}_{p^k} \).

We show that no vertex can be its own inverse. If \(x \in V(\Sigma_{p^k}) \) and \(x = -x \), then \(2x \equiv 0 \pmod{p^k} \). Because \(p > 3 \) is prime, \(\gcd(2, p^k) = 1 \). Since 2 is a unit in \(\mathbb{Z}_{p^k} \), we can multiply by the inverse of 2, which yields \(x \equiv 0 \pmod{p^k} \), a contradiction.

Since there are \(p^{k-1} - 3 \) neighbors of each vertex, the degree of each vertex in \(\Sigma_{p^k} \) is \(p^{k-1} - 3 \).

\[\blacksquare\]
3 Connectedness

Recall that uv-path is a walk in a graph from a vertex u to a vertex v in which no vertices are repeated.

Definition 3.1. A graph G is connected if there exists a uv-path between all pairs of distinct vertices u and v of G.

Definition 3.2. The distance between $u, v \in V(G)$ is the smallest length of a uv-path in G and is denoted $d(u, v)$.

Definition 3.3. The diameter of a graph is the greatest distance between any two vertices of a connected graph G and is denoted $\text{diam}(G)$.

Theorem 3.4. The graph Σ_n is disconnected if and only if:

\[
\begin{align*}
&n = 9 \\
&n = pq \text{ where } p \text{ and } q \text{ are distinct primes.}
\end{align*}
\]

Proof.

(\Leftarrow) The graph Σ_9 has two vertices and no edges, hence Σ_9 is disconnected.

Now let $n = pq$, where p and q are distinct primes. We can partition the vertices into two sets:

\[
A = \{p, 2p, ..., (q-1)p\} \\
B = \{q, 2q, ..., (p-1)q\}
\]

There are no edges between vertices in A and vertices in B because no vertex that is a multiple of q is adjacent to a vertex that is a multiple of p. Therefore Σ_n has at two connected components and so it is disconnected.

In the case where $n = 6$, there are three isolated vertices and therefore disconnected.

(\Rightarrow) We now show that for every n not of this form, Σ_n is connected. So we considered all of the possible prime factorizations of n that are not of the form 3^2 or pq.

Case I: Let $n = p^k$ where $k > 1$ and $n \neq 9$. In order to show that Σ_n is connected, it suffices to show that there exists a uv-path between all vertices u and v in Σ_n.

Let $u \in V(\Sigma_{pq})$. We know from Proposition 2.8 that the graph of Σ_{pq} has $p^{k-1} - 1$ vertices each of degree $p^{k-1} - 3$. For distinct $u, v \in V(\Sigma_{pq})$, if $u \not\sim v$, then u and v are inverses. Therefore, there must be another vertex r such that $u \sim r$ and $v \sim r$. Since inverses are unique, r cannot be the inverse of either u or v. Therefore there exists an uv-path through r. Hence, Σ_{pq} is connected with diameter 2.

Case II: Let $n = p^aq^b$ where p, q are distinct primes and $a > 1$ or $b > 1$. Without loss of generality, assume that $a > 1$.

In this case, $pq \not\sim pq$ and $pq \not\sim (n - pq)$. However, pq is adjacent to every other vertex in the graph; therefore $pq \sim p$. We know that $p \sim (n - pq)$, so $pq, p, (n - pq)$ is a path. Therefore the graph is connected and has diameter 2.

Case III: Let $n = p_1^{e_1}p_2^{e_2}...p_r^{e_r}$ for $r \geq 3$ where the p_i are distinct primes. Let

$$a_i = n/p_i = p_1^{e_1}p_2^{e_2}...p_i^{e_i-1}...p_r^{e_r}$$

For any $i, j \in \mathbb{Z}$, $a_i \sim a_j$ because all a_i are multiples of p_k, and therefore $a_i + a_j$ is a multiple of p_k where $k \neq i, j$ and $k \in \mathbb{N}$. The vertex a_j is of the form:

$$a_j = p_1^{e_1}p_2^{e_2}...p_j^{e_j-1}...p_r^{e_r}.$$

The inverse of a_i is $-a_i = p_1^{e_1}p_2^{e_2}... (p_i^{e_i} - p_i^{e_i-1})...p_r^{e_r}$, so $a_j \neq -a_i$, and since a_j is a multiple of p_k, it is true that $a_i \sim a_j$ for all i, j. So, $a_1, a_2, ..., a_r$ form a clique and are therefore in the same component.

Now we want to show that for all $v \in V(\Sigma_n)$, $v \sim a_s$ for all s except maybe one. Suppose $v = -a_i$ for some i. Then obviously, $v + a_j \neq 0$ for all $j \neq i$. So we have shown that $v + a_j$ is non-zero.

Now we need to show that $\gcd(n, v) > 1$. We know that v is a multiple of p_k for all $k \neq i$, and that a_j is a multiple of all p_k for $k \neq j$. Since $r \geq 3$ we know we can pick $k \neq i, j$. Therefore p_k is a factor of a_j and v and since a_j and v are multiples of p_k, it is true that $a_j + v$ is a multiple of p_k and hence, a zero divisor. So, $v \sim a_k$ for all $k \neq i$ if $v = -a_i$.

Now, suppose v is not of the form a_i for any i. Then there exists i such that $\gcd(v, p_i) > 1$, therefore v is a multiple of p_i. For all $s \neq i$, we know a_s is a multiple
of p_i, since v is a multiple of p_i and a_s is a multiple of p_i, it is true that $v + a_s$ is a multiple of p_i and therefore is a zero divisor. Here, their sum is obviously not 0 because v is not the inverse of any a_i.

Therefore $v \sim a_s$ for all $s \neq i$.

Finally, we need to show that for $u, v \in V(\Sigma_n)$, there exists a uv-path. Find $i, j \in V(\Sigma_n)$ such that $\gcd(p_i, u) > 1$ and $\gcd(p_j, v) > 1$. Since $r > 3$, we find $k \neq i, j$, therefore $u \sim a_k$ and $v \sim a_k$ and thus there exists a uv-path of distance 2, so Σ_n is connected.

Therefore, a Σ_n is disconnected if and only if $n = 9$ or $n = pq$. ▲

Corollary 3.5. If Σ_n is connected, its diameter is less than or equal to 2.

Proof. From the proof of Proposition 3.4 we can see that $\text{diam}(\Sigma_n) \leq 2$ when Σ_n is connected. ▲

Definition 3.6. A uv-trail in a graph is a uv-walk in which no edge is traversed more than once.

Definition 3.7. An Eulerian graph is a graph which contains a closed trail containing every edge.

Theorem 3.8. [3] A nontrivial connected graph is Eulerian if and only if every vertex of G has even degree.

Combining Propositions 2.8 and Case I of 3.4, we develop the following corollary.

Corollary 3.9. Let $p > 3$ be prime, then Σ_{p^k} is Eulerian.

Proof.
From Proposition 2.8 we see that the vertices of the graph of Σ_{p^k} are all of even degree, and from Proposition 3.4 we see that Σ_{p^k} is connected. Therefore by Theorem 3.8, Σ_{p^k} is Eulerian. ▲
4 Cycles

Theorem 4.1. Let \(n \) be composite, then \(\Sigma_n \) contains a cycle if and only if \(n > 9 \).

Proof.

\((\Leftarrow)\) Let \(n > 9 \) be such that \(n = pm \) where \(p \) is the smallest prime that divides \(n \) and \(m \in \mathbb{N} \). Note that this implies \(m \geq 4 \).

If \(n = 4p \), then \(p \neq 2 \) because \(n > 9 \). However, if \(p \geq 3 \), then \(2, 4, 6 \) form a cycle.

If \(n = 5p \) then \(2p \not\sim 3p \), but \(p, 2p, 4p, 3p \) form a cycle.

If \(n \) is not of the form \(4p \) or \(5p \), then \(p, 2p, 3p \) form a cycle.

\((\Rightarrow)\) Now we show by brute force that for \(n \leq 9 \) the graph of \(\Sigma_n \) does not contain a cycle.

For \(n = 1, 2, 3, 5, 7, \) \(n \) is prime, so \(\Sigma_n \) obviously contains no cycle because it is the empty set.

For \(n = 4 \), the graph contains only the vertex 2, so \(\Sigma_4 \) does not contain a cycle either.

For \(n = 6 \), the graph contains 3 vertices, but 3 is an isolated vertex, so there is no cycle.

For \(n = 8 \), the graph contains 3 vertices, but 2 and 6 are not adjacent, so there is no cycle.

Therefore, for composite \(n \), the graph \(\Sigma_n \) contains a cycle if and only if \(n > 9 \). ▲

Definition 4.2. If a graph \(G \) has a cycle, then the girth of \(G \) is the length of the shortest cycle in \(G \). The girth of a graph \(G \) is denoted \(gr(G) \).

Corollary 4.3. If \(n \neq 5p \) and \(n > 9 \) is composite, then \(gr(\Sigma_n) = 3 \).

Proof. This is clear from the proof of Proposition 4.1. ▲

Corollary 4.4. If \(n = 5p \) for \(p = 2 \) or 3, then \(gr(\Sigma_n) = 4 \).

Proof.

Recall that \(p \) is the smallest prime that divides \(n \) where \(n > 9 \). Since \(5 \mid n \), and \(p \leq 5 \), there are only 3 cases to consider, \(n = 10, n = 15 \), and \(n = 25 \). In each case, inspection shows that \(\Sigma_n \) contains no 3-cycles.
If \(n = 10 \) a cycle is formed by 2, 4, 8, 6 and \(gr(\Sigma_{10}) = 4 \).

Figure 1: This is a picture of \(\Sigma_{10} \); note that there are no three cycles.

If \(n = 15 \) a cycle is formed by 3, 6, 12, 9 and \(gr(\Sigma_{15}) = 4 \).

Figure 2: This is a picture of \(\Sigma_{15} \); note that there are no three cycles.

If \(n = 25 \) a cycle is formed by 5, 10, 20, 15 and again \(gr(\Sigma_{25}) = 4 \).

Figure 3: This is a picture of \(\Sigma_{25} \); note that there are no three cycles.

Thus, \(gr(\Sigma_n) = 4 \) in all 3 cases.
5 Planarity

Definition 5.1. A graph is planar if it can be drawn in the plane with no edge crossings.

To prove our next lemma, we use the Handshaking Theorem[5]:

Theorem 5.2. The sum of the degrees of the vertices of a graph is equal to twice the number of edges.

We denote the number of vertices as m and the number of edges as e to obtain the equation

$$\sum_{v \in V} \deg(v) = 2e.$$

Lemma 5.3. For all graphs, $\delta m/2 \leq e$.

Proof. For every $v \in V(\Sigma_n)$, $\delta \leq \deg(v)$. Therefore, $\delta m \leq \sum_{v \in V} \deg(v)$. By the handshaking theorem, $\delta m \leq 2e$. Dividing by 2, $\delta m/2 \leq e$. ▲

Definition 5.4. A face is a portion of a plane drawing of a planar graph which is bounded by edges and has no edge running through the interior.

Theorem 5.5. [5] (Euler’s Formula) For any connected plane graph G, $m - e + f = 2$, where f denotes the number of faces in G.

Lemma 5.6. If Σ_n is planar, then $e \leq 3m - 6$.

Proof. Every face in Σ_n has length ≥ 3. Let F_1, F_2, \ldots, F_k be the faces in Σ_n and $l(F_i)$ be the length of the boundary of the face F_i. Because every edge e is part of the boundary of two faces, $2e = \sum_1^k l(F_i) \geq \sum_1^k 3 = 3f$. So $f \leq 2e/3$. Using Euler’s formula, we know

$$f = 2 - m + e \leq 2e/3$$
$$e/3 \leq m - 2$$
$$e \leq 3m - 6$$

▲

We use Lemma 5.3 and Lemma 5.6 to obtain the following inequalities:
Theorem 5.7. Let \(p \) be prime and \(k > 1 \). If \(\Sigma_{p^k} \) is planar, then \(k \leq 3 \). Further, \(p \leq 7 \) for \(k \leq 2 \) and \(p = 2 \) for \(k = 3 \).

Proof.

By the result above, \(\delta \leq 6 - 12/m \). Let \(i \) be any integer such that \(1 < i \leq k \) and let \(c \) be any integer such that \(1 \leq c \leq p - 1 \). Since \(p \) is prime, \(cp^i \in V(\Sigma_{p^k}) \) is adjacent to every vertex in \(V(\Sigma_{p^k}) \) except for itself and \(p^k - cp^i \). Therefore, \(\delta = m - 2 \), and we have

\[
\begin{align*}
 m - 2 & \leq 6 - 12/m \\
 m - 8 + 12/m & \leq 0 \\
 m^2 - 8m + 12 & \leq 0 \\
 (m - 6)(m - 2) & \leq 0 \\
 m & \leq 6
\end{align*}
\]

But we know that \(m = p^{k-1} - 1 \), so

\[
\begin{align*}
 m = p^{k-1} - 1 & \leq 6 \\
 p^{k-1} & \leq 7
\end{align*}
\]

If \(k = 2 \), then \(p \leq 7 \).

If \(k = 3 \), then \(p^2 \leq 7 \), and \(p = 2 \).

If \(k \geq 4 \), then \(p^{k-1} \leq 7 \), and \(p < 2 \), which is impossible. \(\blacksquare \)

Definition 5.8. A subdivision of an edge \(e = uv \) occurs when a new vertex \(w \) is placed along \(e \) and the edge \(uv \) is replaced by the path \(uwv \) of length 2.

Definition 5.9. Let \(G \) and \(G' \) be graphs. \(G \) is homeomorphic to \(G' \) if there exists a graph \(H \) such that \(G \) and \(G' \) both result from subdivisions of \(E(H) \).

Definition 5.10. The graph \(K_{3,3} \) has six vertices. Three of the vertices \(a, b, \) and \(c \) are all adjacent to the other three vertices \(d, e, \) and \(f \). Also, \(a \sim b, c; b \sim c; d \sim e, f; e \sim f \).

Definition 5.11. The graph \(K_5 \) has five vertices, each of which are adjacent to the other four.
Theorem 5.12. [5] (Kuratowski’s Theorem) A graph is planar if and only if it has no subgraph homeomorphic to K_5 or $K_{3,3}$.

Lemma 5.13. Every subgraph of a planar graph is planar.

Proof. Suppose not. Let G be a planar graph and H be a non-planar subgraph of G. Then H contains a subgraph homeomorphic to K_5 or $K_{3,3}$. So G itself must contain a subgraph that is homeomorphic to K_5 or $K_{3,3}$. ▲

Definition 5.14. Let G be a graph and $S \subseteq V(G)$. The subgraph induced by S, denoted $G[S]$ is the graph defined by $V(G[S]) = S$ and $e \in E(G[S])$ if $e \in E(G)$ and both endpoints of e are elements of S.

Theorem 5.15. Let $p_1^{e_1}, p_2^{e_2}, \ldots, p_r^{e_r}$ be primes. If $\Sigma_{p_1^{e_1}, p_2^{e_2}\ldots p_r^{e_r}}$ is planar, then $p_i \leq 7$ for every i.

Proof. Let I be the subgraph of $\Sigma_{p_1^{e_1}, p_2^{e_2}\ldots p_r^{e_r}}$ induced by p_i, $2p_i, \ldots, (p_j-1)p_i$ for some $1 \leq i \leq r$ and $1 \leq j \leq r$, $i \neq j$. By Lemma 5.13, if $\Sigma_{p_1^{e_1}, p_2^{e_2}\ldots p_r^{e_r}}$ is planar, then I must be planar. Since the vertices of $\Sigma_{p_j^2}$ are $\{p_j, 2p_j, \ldots, (p_j-1)p_j\}$, the mapping $qp_i \mapsto qp_j$ defines an isomorphism from I to $\Sigma_{p_j^2}$. Since I is planar, then $\Sigma_{p_j^2}$ must be planar. Therefore, by Proposition 5.7, $p_j \leq 7$ for all $1 \leq j \leq r$. ▲

Corollary 5.16. Σ_n is only planar for

$$n = 4, 6, 8, 9, 10, 12, 14, 15, 21, 25, 35, 49.$$

For any planar graph, each component is isomorphic to one of the following:

Figure 4: Σ_4
Figure 5: Σ_8

Figure 6: Σ_{12}

Figure 7: Σ_{25}

Figure 8: Σ_{49}
Definition 5.17. A planar graph is outerplanar if every vertex of the graph lies on the boundary of the exterior region.

Definition 5.18. The graph \(K_{2,3} \) has five vertices. Two of the vertices \(a \) and \(b \) are adjacent to the three other vertices in the graph, \(c, d, \) and \(e. \) Also, \(a \sim b, c \sim d, \) \(c \sim e, \) and \(d \sim e. \)

Theorem 5.19. Let \(G \) be a graph. If \(G \) has a subgraph homeomorphic to \(K_{2,3}, \) then \(G \) is not outerplanar.

Proof. For a contradiction, assume \(G \) has a subgraph homeomorphic to \(K_{2,3} \) and \(G \) is outerplanar. Then it is possible to introduce a new vertex \(v \) inside the exterior region such that \(v \) is adjacent to \(c, d, \) and \(e \) and the resulting graph is planar. This would imply that \(K_{3,3} \) is planar, which is not true by Kuratowski’s Theorem. ▲

Proposition 5.20. The graph \(\Sigma_n \) is outerplanar if and only if
\[
n = 4, 6, 8, 9, 15, 25.
\]

Proof. If \(\Sigma_n \) is outerplanar, it must be planar. So we have a limited number of values for \(n \) to investigate. The graphs of \(\Sigma_4, \Sigma_8, \) and \(\Sigma_{25} \) are clearly outerplanar. The graph of \(\Sigma_{12} \) is not outerplanar because the vertices 10 and 2 are each adjacent to 8, 4, and 6. Thus it has a subgraph isomorphic to \(K_{2,3}. \) The graph of \(\Sigma_{19} \) is not outerplanar because the vertices 7 and 42 are each adjacent to 14, 21, and 28. Thus it has a subgraph isomorphic \(K_{2,3}. \) ▲

6 Automorphisms

Proposition 6.1. Let \(s \in \mathbb{Z}_n. \) Then the map \(M_s : V(\Sigma_n) \to V(\Sigma_n) \) defined by \(M_s(x) = sx \) induces an automorphism of \(\Sigma_n \) if and only if \(s \in \mathbb{Z}_n^*. \)

Proof. \((\Leftarrow) \) Suppose \(u \in \mathbb{Z}_n \) is a unit and \(x, y \) are adjacent vertices. Then \(x + y \) is a vertex, so \(x + y \neq 0. \) Since \(u \) is a unit,
\[
\begin{align*}
ux + uy &= u(x + y) \\
&
\end{align*}
\]

18
Thus, $ux \sim uy$. This shows that the map M_u preserves edges.

We must show M_u is one-to-one. Suppose that there exists $x, y \in V(\Sigma_n)$ such that $ux = uy$. Since $u \in \mathbb{Z}_n^*$, we have $u^{-1}(ux) = u^{-1}(uy)$. Therefore, M_u is one-to-one, since $x = y$.

We do not need to show M_u is onto because any one-to-one map from a finite set to itself is automatically onto.

Therefore M_u a one-to-one correspondence between the vertices which preserves edges.

(\Rightarrow) To prove the contrapositive, assume z is not a unit. Thus z is a zero divisor. Now suppose $z \in \mathbb{Z}_n$ is a zero divisor. Then there exists $t \neq 0$, such that $zt = 0$. Since $t \in V(\Sigma_n)$, $zt = 0$, which is not a vertex. Therefore M_z is not an automorphism.

The following table shows all 50 automorphisms of Σ_{16}. Keep in mind that 8 is a dominating vertex and is adjacent to every other vertex in the graph. Since no other vertex is adjacent to everything else, then 8 will always map to itself. For that reason we will not include in the table $8 \mapsto 8.$

\begin{table}
\end{table}
<table>
<thead>
<tr>
<th>2 → 2</th>
<th>14 → 14</th>
<th>4 → 10</th>
<th>12 → 6</th>
<th>10 → 4</th>
<th>6 → 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 → 4</td>
<td>14 → 12</td>
<td>4 → 2</td>
<td>12 → 14</td>
<td>10 → 10</td>
<td>6 → 6</td>
</tr>
<tr>
<td>2 → 6</td>
<td>14 → 10</td>
<td>4 → 12</td>
<td>12 → 4</td>
<td>10 → 2</td>
<td>6 → 14</td>
</tr>
<tr>
<td>2 → 10</td>
<td>14 → 6</td>
<td>4 → 4</td>
<td>12 → 12</td>
<td>10 → 2</td>
<td>6 → 14</td>
</tr>
<tr>
<td>2 → 12</td>
<td>14 → 4</td>
<td>4 → 2</td>
<td>12 → 14</td>
<td>10 → 12</td>
<td>6 → 4</td>
</tr>
<tr>
<td>2 → 14</td>
<td>14 → 2</td>
<td>4 → 4</td>
<td>12 → 12</td>
<td>10 → 10</td>
<td>6 → 6</td>
</tr>
</tbody>
</table>

20
7 Acknowledgements

The authors would like to thank Dr. Reza Akhtar and Miss Laura Lynch for invaluable support and guidance. We are also grateful to the directors of SUMSRI for providing the opportunity to conduct this research. Finally, we thank the National Security Agency, the National Science Foundation and Miami University for financial support of our research during the summer of 2006.

We would also like to thank Dr. Farmer for his help in producing this paper.

Additionally we would like to extend our thanks to the faculty of the math department of Miami University for making this program possible.

Samantha Graffeo would especially like to thank her math professors at Swarthmore College- her friends and mentors who believe in her when she doesn’t believe in herself- Garikai Campbell, Janet Talvacchia and Cheryl Grood. She would also like to thank her family and friends, who although they might not understand exactly what she’s doing, always support her in doing it.

Chantelle Bicket would like to thank Dr. William Wolesensky of College of Saint Mary for instilling confidence in her and pushing her to her fullest potential. She would also like to thank her family members for the love and support they provide.

Edward Washington would like to thank his math professors at WSSU and specifically his advisor Dr. Vincent Snipes. He would also like to thank Dr. Wanda Patterson and Dr. John Adeyeye.
8 Appendix: Glossary of Terms

In the following definitions, let $G = \Sigma_n$ be the graph with vertex set $V(\Sigma_n)$ and edge set $E(\Sigma_n)$.

Adjacent: Two vertices $u, v \in V(G)$ are said to be *adjacent* if $uv \in E(G)$.

Associate: Let R be a ring, and $a, b \in R$. We say that a is associate to b if $a = ub$ for some unit u.

Connected: A graph G is connected if there exists a uv-path between all pairs of distinct vertices u and v of G.

Degree: The degree of a vertex v is the number of edges incident at it.

Diameter: The diameter of a graph is the greatest distance between any two vertices of a connected graph G and is denoted $\text{diam}(G)$.

Distance: The distance between $u, v \in V(G)$ is the shortest length of a uv-path in G.

Dominating vertex: Any vertex, $v \in V(\Sigma_n)$, that is adjacent to every other vertex in Σ_n.

Eulerian Graph: A graph which has a closed trail containing every edge.

Face: A face is a portion of the graph which is bounded by edges and such that there is no edge running through the interior.

Girth: If a graph G has a cycle, then the girth of G is the length of the shortest cycle in G. The girth of a graph G is denoted $gr(G)$.

Graph: A graph G consists of a vertex set, $V(G)$, an edge set $E(G)$, and an association to each edge, $e \in E(G)$ of two vertices, called the endpoints of e.

Incident: An edge is incident at a vertex if that vertex is one of its endpoints.

Minimum degree: The minimum degree of a graph G is the smallest degree of all
the vertices in a graph.

Outerplanar: A planar graph is outerplanar if every vertex of the graph lies on the boundary of the exterior region.

Path: A uv-path is a walk in a graph starting at a vertex u and ending at a vertex v in which no vertex is repeated

Planar Graph: A graph is planar if it can be drawn in the plane with no edge crossings.

Subgraph: Let Σ_n be a graph. A subgraph of Σ_n is a graph H such that $V(H) \subseteq V(\Sigma_n)$ and $E(H) \subseteq E(\Sigma_n)$.

Unit: A unit is an element $u \in R$ that has a multiplicative inverse in R, i.e. there exists a $v \in R$ such that $uv = 1$ and $vu = 1$.

Walk: A walk in a graph G is a sequence of vertices such that consecutive vertices in the sequence are adjacent.

Zero divisor: In a ring R, a zero divisor is an element $z \in R$ for which there exists $x \in R$, $x \neq 0$ such that $zx = 0$.
References

Chantelle Bicket
College of Saint Mary
Omaha, NE
cbicket80@csm.edu

Samantha Graffeo
Swarthmore College
Philadelphia, PA
sgraffe1@swarthmore.edu

D. Whitney Ross
Spelman College
Atlanta, GA
darwhit@yahoo.com

Edward Washington
Winston-Salem State University
Winston-Salem, NC
bb0150@gmail.com