RAPID COMMUNICATIONS

Freeze Duration Influences Postfreeze Survival in the Frog Rana sylvatica

JACK R. LAYNE, JR.,* JON P. COSTANZO,² AND RICHARD E. LEE, JR.²

¹Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057
²Department of Zoology, Miami University, Oxford, Ohio 45056

ABSTRACT Survival, cryoprotection, and the time course for recovery of vital functions were studied in autumn-collected juvenile wood frogs (Rana sylvatica) following freezing at -1.5°C for various periods. Frogs readily tolerated freezing for 3 or 9 d, but only 50% survived a 28-d freezing trial. Generally, the postfreeze return of vital functions (vascular circulation, pulmonary breathing, righting reflex, jumping reflex) occurred later in frogs frozen for longer periods. Augmenting endogenous levels of the cryoprotectant glucose (via injections) prior to freezing substantially increased freeze endurance, as these frogs had excellent survival after remaining frozen for as long as 49 d. The improved freeze endurance of glucose-loaded frogs apparently was not associated with a reduction in ice content but rather may reflect the greater availability of energy substrate needed to support metabolism of frozen ischemic tissues. J. Exp. Zool. 280:197–201, 1998. © 1998 Wiley-Liss, Inc.

A few species of North American frogs, including the wood frog (Rana sylvatica), hibernate at or near the soil surface where they may encounter frost (Schmid, '82). These frogs tolerate an extensive freezing of their body fluids for reviews, see Costanzo et al., '95; Layne and Lee, '95; Storey et al., '96). Freeze tolerance is promoted, in part, by the cryoprotectant glucose, which is synthesized and mobilized to tissues in response to ice crystallization within body fluids. Cryoprotectants preserve the integrity of cell membranes and macromolecules, limit osmotic shrinkage, and colligatively reduce the amount of ice that forms in the body (Mazur, '84).

One measure of the capacity for freeze tolerance is the minimum body temperature (= lower lethal temperature, LLT) that can be survived during freezing. This is a useful convention because temperature chiefly determines the quantity of ice that forms and, hence, the potential for cryoinjury. Although rigorous determinations of the LLT are lacking for many species, the value for R. sylvatica ranges from -5 to -6°C during the autumn and winter (Costanzo et al., '95; Layne and Lee, '95; Storey et al., '96). In spring, the LLT is higher (ca. -3°C), partly because less cryoprotectant is mobilized from the virtually depleted glycogen reserves (Storey and Storey, '87; Costanzo and Lee, '93; Layne, '95). Freeze tolerance of spring-collected frogs is substantially improved by augmenting natural cryoprotectant with exogenous glucose (Costanzo et al., '93).

Another useful, but relatively unstudied, index of freeze tolerance capacity is the length of time that sustained freezing can be tolerated (i.e., "freeze endurance"). This question has physiological and ecological relevance to R. sylvatica because this species lives in regions of North America (e.g., above the Arctic Circle) where freezing conditions may persist.

Our study investigates the effects of freeze duration on postfreeze survival and postfreeze recovery of physiological functions in R. sylvatica. The efficacy of glucose to protect frogs from lethal injury during prolonged freezing was also tested. Prolonged freezing (to 28 d) induced lethal injury and, to a lesser extent, slowed the rate of recovery in surviving frogs. Supplemental injections of glucose mitigated the lethal effects that were caused by prolonged freezes lasting 28 and 49 d.

MATERIALS AND METHODS

Rana sylvatica juveniles (mean ± SE body mass = 3.3 ± 0.08 g, n = 67) were collected from woodlands in Butler Co., PA, during the second and third weeks of October 1994 and 1995 and accli-

© 1998 WILEY-LISS, INC.
mated under winterlike photothermal conditions in the laboratory. Frogs were sequentially exposed to 15°C (12:12 LD) for 1 week, 10°C (10:14 LD) for 1 week, and finally to 5°C (8:16 LD), under which conditions they were kept until used. Frogs were housed, unfed, on damp paper.

Our protocol for freezing frogs promotes survival and presumably mimics natural freezing and thawing episodes (i.e., slow freezing followed by gradual warming; Layne, 95). Frogs were frozen in 2-L jacketed beakers through which coolant was pumped by a refrigerated bath (Fisher 9001). Groups of 3–6 frogs were placed on water-saturated filter paper inside plastic petri dishes (diameter, 9 cm) that were stacked inside the jacketed beakers. Temperature was monitored by a thermocouple which had a sensing junction positioned inside each dish. After supercooling the dishes to ca. −1.5°C, a small ice crystal (<1 g, −20°C) was dropped onto the water-saturated filter paper in each dish, leading to freezing of the paper. The frogs then quickly froze owing to the nominal resistance their integument offers to the growth of ice crystal into body fluids (Layne et al., 90). The frogs were kept frozen at the target body temperature (−1.5°C) for up to 49 d.

Frogs were thawed and permitted to recover in humidified plastic cages held in a cold room (5°C). To assess their survival, frogs were examined daily, for up to 7 d, for the maintenance of normal body posture and jumping in response to gentle prodding of the urostyle. Some frogs were also examined sequentially at intervals of 2, 4, 24, and 48 h after the onset of thawing to determine the time course for restoration of basic functions. These frogs were transferred from the cold room to the lab bench (20–25°C) 5 min before they were briefly examined for the presence of: (1) blood circulation, pulmonary breathing.

RESULTS

At the conclusion of the freezing trials, the frogs were inanimate, rigid, and extensively frosted. The postfreeze survival rate depended on freeze duration (Fisher’s exact test: P = 0.014). All of the frogs kept frozen for 3 (n = 6) or 9 d (n = 11) readily recovered. However, survival was reduced to 50% in the group (n = 12) that was kept frozen for 28 d. Two-thirds of the frogs that ultimately died exhibited early signs of recovery (i.e., vascular circulation, pulmonary breathing).

Generally, physiological functions returned with 1–2 d of postfreeze recovery, although the timing of the return depended on the length of the freezing trial (Fig. 1). Basic vital functions (e.g., cutaneous perfusion) resumed before those requiring complex integration of the central nervous system. Return of pulmonary breathing and the righting reflex (but not the jumping reflex) was deferred by prolonged freezing (Fig. 1).

Freeze endurance was markedly improved by injecting frogs with glucose prior to freezing. Glucose loading permitted the survival of all of 11 frogs kept frozen for 28 d, and 9 of 10 frogs kept frozen for 49 d. In contrast, for animals used in
28-d trials, the survival rate of frogs receiving only saline (1 of 5, 20%) was comparable to that of uninjected frogs (Fisher's exact test: $P = 0.34$). Glucose administration had no effect ($F = 0.90, P = 0.40$) on the body ice content of frogs frozen at $-1.5^\circ C$ for 9 d, as the mean value for glucose-loaded frogs ($22.7 \pm 1.2\%$ of body water, $n = 4$) was comparable to that of the uninjected controls ($30.4 \pm 2.5\%$ of body water, $n = 4$). The body water content of glucose-loaded frogs ($82.7 \pm 1.0\%$ wet wt., $n = 4$) was similar ($F = 0.36, P = 0.73$) to that of the uninjected controls ($83.1 \pm 0.4\%$ wet wt., $n = 4$).

**DISCUSSION**

Extensive freezing of the body fluids solidifies tissues, arrests vascular circulation, and deprives cells of oxygen. Upon thawing, basic physiological functions (e.g., heart beat and vascular circulation) return before functions that require complex neurological integration, such as righting and jumping reflexes (Layne and First, '91; Kling et al., '94). In the present study, the recovery sequence was similar although the time course was delayed in frogs exposed to protracted freezing.

Difficulty in evaluating the risk of freezing mortality in nature stems from uncertainty about the microenvironmental conditions to which frogs are exposed during winter. In the present study, autumn-collected frogs readily tolerated uninterrupted freezing episodes lasting several days, and many endured freezing for about 1 month. This time frame seems ample to promote winter survival in the midwestern United States, where freezing episodes are likely interrupted by occasional thaws. Possibly, the capacity for freeze tolerance varies geographically, with frogs from colder portions of the range (e.g., Canada and Alaska) tolerating lower temperatures and longer freezing episodes than frogs from more temperate locales.

For convenience, freezing protocols generally involve brief (e.g., 24–48 h) exposure to modest sub-zero temperature (e.g., $-2.5^\circ C$), thus little is known about the tolerance of relatively long freezing episodes. Grey tree frogs (*Hyla versicolor*) recover after remaining frozen for 1 week at ca. $-6^\circ C$ (Schmid, '82), or 2 weeks at $-2.5^\circ C$ (Storey and Storey, '85). About 50% of *R. sylvatica* survive freezing at $-4^\circ C$ for 11 d (Storey and Storey, '84), although virtually all can survive ca. 2 weeks when frozen at $-1.5^\circ C$ (Layne, '95). Our present data indicate that, in autumn, *R. sylvatica* juve-
niles can survive in the frozen state for at least several weeks.

The capacity for freeze tolerance is strongly influenced by season (Storey and Storey, '87). Autumn-collected R. sylvatica in the present study endured substantially longer freezing episodes than did frogs collected in summer (Layne, '95). Our ancillary observations of R. sylvatica adults captured at breeding pools in Ohio and Pennsylvania, which tolerated freezing for periods of fewer than 5 d, also suggest that freeze endurance is diminished after emergence from hibernation (Table 1). Such seasonal variation in freeze tolerance capacity may partly reflect changes in the quantity of cryoprotectant that can be produced (Storey and Storey, '87; Costanzo and Lee, '93; Layne, '95). These frogs had meager hepatic glycogen concentrations (mean ± SEM = 137 ± 24 μmol/g wet wt.; n = 8) and accumulated only small amounts of glucose in the blood (8 ± 2 μmol/mL; n = 4). In contrast, the typically high concentration of liver glycogen (e.g., 800 μmol/g wet wt.) in autumn enables R. sylvatica to achieve blood glucose concentrations of 300–500 μmol/mL upon freezing (Storey et al., '96). Nevertheless, administering exogenous glucose to these spring-collected frogs did not appreciably increase freeze endurance (Table 1), perhaps owing to the diminished efficacy for cellular uptake of glucose at this time (King et al., '95) or changes in other, endogenous factors.

The cryoprotective effects of glucose during relatively brief freezing have been demonstrated in R. sylvatica at cellular, tissue, and whole-animal levels of organization (review in Costanzo et al., '95). Although a primary function of cryoprotectants is to reduce ice formation (Mazur, '84), levels of organization (review in Costanzo et al., '95). Although a primary function of cryoprotectants is to reduce ice formation (Mazur, '84), in the present study, glucose enhanced freeze endurance apparently without influencing the body

\[ \text{Freeze duration (d)} \]

<table>
<thead>
<tr>
<th>Exposure temp. (°C)</th>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.5^a</td>
<td>Control</td>
<td>4/4</td>
<td>4/4</td>
<td>1/4</td>
<td>0/9</td>
</tr>
<tr>
<td></td>
<td>Glucose-loaded</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2/5</td>
</tr>
<tr>
<td>-2.5^b</td>
<td>Control</td>
<td>20/20</td>
<td>4/5</td>
<td>3/5</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>Glucose-loaded</td>
<td>—</td>
<td>—</td>
<td>3/5</td>
<td>—</td>
</tr>
</tbody>
</table>

The glucose solution was 1,500 mM glucose in Ringer's saline. Shown for each trial is the number of survivors/number of frogs tested.

\(^{a}\)Collected in Butler Co., PA, during early April 1996.


Acknowledgments

This research was supported by a grant from the National Science Foundation (IBN 95-07437). We are indebted to M.F. Wright for commenting on an earlier draft of the manuscript.

Literature Cited


